Magni version 1.6.0 released
04 Nov 2016Our newest version of the Magni software package was just released on the 2nd of November. We have not usually mentioned new releases of the package on this website, but this particular release has some interesting features we hope some of you find particularly interesting.
The major new features in this release are approximate message passing
(AMP) and generalised approximate message passing (GAMP) estimation
algorithms for signal reconstruction. These new algorithms can be
found in the magni.cs.reconstruction.amp
and
magni.cs.reconstruction.gamp
modules, respectively. Note that the
magni.cs
sub-package contains algorithms applicable to compressed
sensing (CS) and CS-like reconstruction problems in general - and not
just atomic force microscopy (AFM).
If you are not familiar with the Magni package and are interested in compressed sensing and/or atomic force microscopy, we invite you to explore the functionality the package offers. It also contains various iterative thresholding reconstruction algorithms, dictionary and measurement matrices for 1D and 2D compressed sensing, various features for combining this with AFM imaging, and mechanisms for validating function input and storing meta-data to aid reproducibility.
The Magni package was designed and developed with a strong focus on well-tested, -validated and -documented code.
Download
- The package can be found on GitHub where we continually release new versions: GitHub - release 1.6.0 here.
- The package documentation can be read here: Magni documentation
- The package can be installed from PyPI or from Anaconda.